
Automotive Electronics

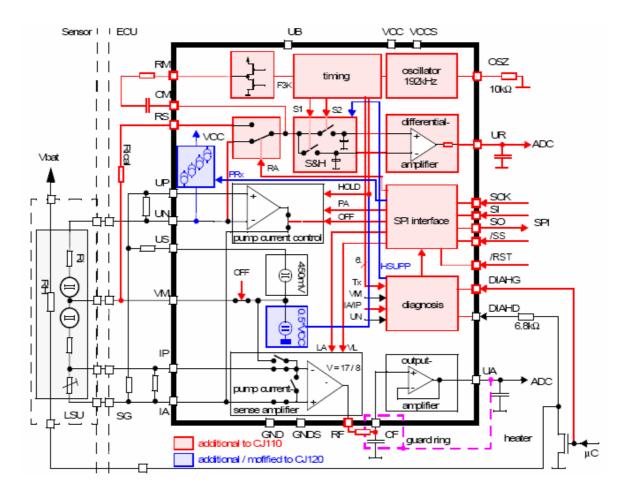
Product Information Lambda Probe Interface IC - CJ120/125

Integrated circuit for continuous lambda regulation with Ri measurement

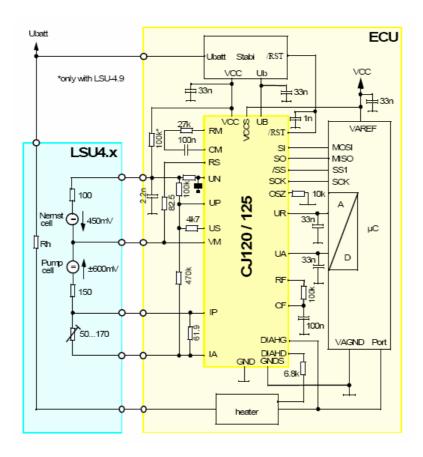
Customer benefits:

- Excellent system know-how
- Smart concepts for system safety
- Secured supply
- Long- term availability of manufacturing processes and products
- QS9000 and ISO/TS16949 certified

The integrated circuit CJ120/CJ125 is a control and amplifier circuit for a wide range λ -Sensor LSU4.x for the continuous regulation of λ in combination with the sensor in the range of $\lambda = 0.65... \infty$ (air).

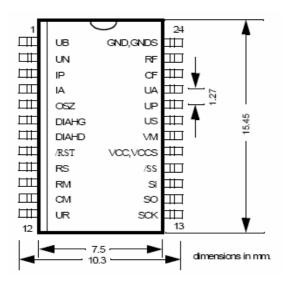

Features

- Pump current control with hold function and shut off for regulation of nernst cell at 450mV
- Pump current sense amplifier with switchable amplification and adjustment
- Iambda output amplifier
- Virtual ground voltage source for sensor and pump current control
- Nernst cell reference voltage source (450mV, reference to virtual ground)
- Offset adjust control
- Diagnosis circuit
- Oscillator / generation for timing
- Ri measurement and calibration with S&H and Ri differential amplifier
- SPI (only slave mode) for initialization, identification and transfer of diagnosis information


Features only CJ125

- Programmable reference pumping current (4 bits)
- Suppression of parasitic interference of heater clock with Ri measurement

Block diagram


Application example (only proposal!)

The application circuit of the CJ120/125 consists of the following parts :

- Capacitor between [VCC] and [GND] to stabilize the supply voltage VCC
- Capacitor between [UB] and [GND] to stabilize the supply voltage VUB
- Capacitor between [CF] and [GND] to filter the lambda signal
- Capacitor between [UA] and [GND] to stabilize lambda signal output
- Capacitor between [UN] and [GND] to stabilize nernst signal
- Capacitor between [/RST] and [GND] to stabilize reset signal
- Shunt between [IA] and [IP] for pump current sensing
- Resistor between [IA] and [UP] to compensate parasitic effects of the lambda sensor
- Resistor between [US] and [UP] to feed the nernst cell reference voltage into the pump current control circuit
- Resistor between [UP] and [UN] for leakage detection
- Resistor between [RF] and [CF] to filter the lambda signal
- Capacitor between [UR] and [GND] to stabilize the output signal for ADC
- Capacitor between [UN] and [GND] for filtering
- Resistor between [RM] and capacitor at [CM] for adjustment of Ri measurement current
- Capacitor between [CM] and resistance at [RM] for dc filtering.
- Resistor between [RS] and [VM] for adjustment
- Resistor between [UN] and [VCC] only for LSU-4.9
- Resistor between [DIAHD] and Drain of the external heater
- Resistor and capacitor before [UN] for filtering

PIN configuration

Pin description

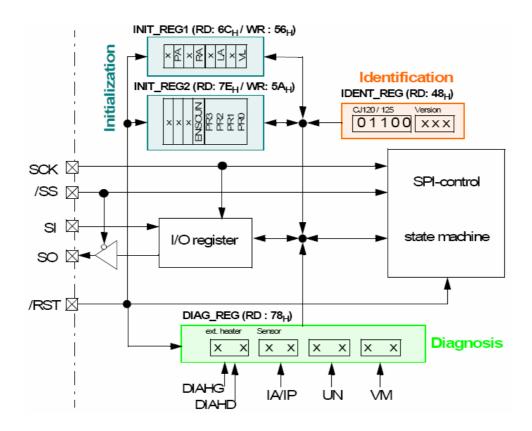
Pin	Description		
UB	Power supply input (14V)		
VCC,VCCS a.)	Power supply input (5V)		
GND, GNDS b.)	Ground		
VM	Virtual ground of pump current control and of the LSU (0.5VCC)		
US	Nernst cell reference voltage (450mV)		
IP	Inverting input of pump current amplifier (shunt voltage)		
IA	Non inverting input of pump current amplifier and output of the pump current control		
RF	Output of pump current amplifier (> external filter)		
CF	Input of lambda output amplifier (after external filter)		
UA	Output of lambda output amplifier		
UP	Non inverting input of pump current control		
UN	Inverting input of pump current control respective in-/output for Ri-measurement (LSU)		
RM	Output Ri-measurement current (DC)		
СМ	Input Ri-measurement current (AC, DC free)		
RS	In-/output Ri-calibration measurement		
UR	Output Ri-signal (analogous)		
DIAHG	Diagnosis input (gate of external transistor)		
DIAHD	Diagnosis input (drain of external transistor)		
SCK	Input SPI-clock (from µC)		
SI	Input serial data (SPI, from µC)		
SO	Output serial data (SPI, to µC)		
/SS	Slave select (SPI, from µC)		
/RST	Input Reset		
OSZ	R _{extern} = 10kΩ		

 $^{\rm a.)}$ For hybrid version it is recommended to connect VVCS with the reference VCC for the ADC

 $^{\mathrm{b.)}}$ For hybrid version it is recommended to connect GNDS with the reference ground for the ADC

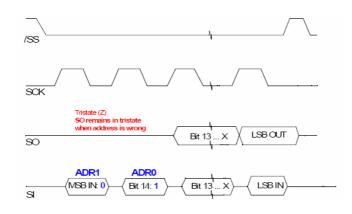
Maximum ratings

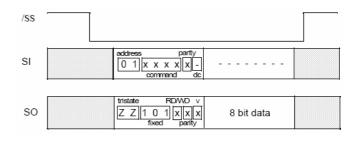
Parameter	Condition	Symbol	Min.	Max.	Unit
Supply voltage UB		Vub	-0.3	35	V
Supply voltage VCC		Vvcc	-0.3	5.5	V
Temperature	Junction Storage Ambient	Tj Tst Ta	-40 -40 -40	150 150 125	0° 0° 0°
Maximum allowed voltages valid for pins: RM, UP, US,RF, CF, UA, UR, DIAHG, DIAHD; SCK, SI, SO, /SS, /RST, OSZ		Vx	-0.3	Vvcc+0.3	V
Allowed current	Ext. resistor 6.8 k Ω	Idiahd	-1	10	mA
Maximum allowed voltages, no destruction when ISO-pulses 3a,b are applied. Valid for board pins: RS, UN, VM, IA, IP, CM		Vx	-0.3	28	V
Offset between GND and GNDS		ΔV gnd	-0.1	0.1	V
Offset between VCC and VCCS		ΔVvcc	-0.1	0.1	V
ESD	Human body model R= 1.5kΩ, C= 100pF		-2	2	kV


Electrical characteristics

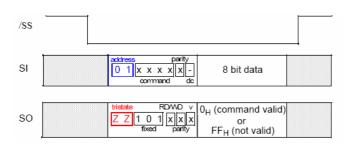
Parameter	Condition	Symbol	Min.	Max.	Unit
Power supply		· · ·			
Power supply operating range	VGND = VGNDS VVCC = VVCCS	Vub Vvcc	9 4.75	18 5.25	V V
Current consumption		lvcc		75	mA
Current consumption		lvccs		4	mA
Pump current control				·	
Offset voltage		Voff	-10	10	mV
Input current	-40°C • T _j < 150°C	IUP, UN	-1	1	μA
Input offset current	-40°C • T _j < 150°C	loff	-1	1	μA
Output current source condition	VUN < VUP; PA = 1; 0.5V < VIA < VCC-0.5V	-Па	10	30	mA
Output current sink condition	VuN > VuP; PA = 1; 0.6V < VIA < Vcc-0.5V	Па	10	30	mA
No output current	PA = 0	lia	-10	10	μA
Pump current sense amplifier (LA = 0	: measurement mode; LA = 1:	adjustment m	ode)		
Input current	-40°C • T _j < 150°C	lip	-1	1	μA
Amplification	SPI-bit VL = 1	Ao	16.64	17.24	
Amplification	SPI-bit VL = 0	Ao	7.85	8.15	
Common mode rejection ratio	$\begin{array}{c} CMRR^{-1=} \Delta V_{UA} / \Delta V_{IP} \\ V_{IP}=V_{IA}=14V \\ 0.5V < V_{UA} < V_{CC}\text{-}0.5V \\ I_{UA} < 10\mu A \end{array}$	CMRR ⁻¹		12	mV/V
Output voltage swing	IυΑ < 10μΑ; LΑ = 0	Vua	0.20	Vvcc -0.18	V
Output voltage adjustement	IRF=0µA; LA = 1	Vrf / Vvcc	0.285	0.315	
Output error offset adjust	$\Delta V_{UA} = V_{UA}(LA = 1)$ $- V_{UA}(LA = 0)$ $V_{IP} = V_{IA} = V_{VM}$ $ I_{UA} < 10\mu A$	ΔVυα	- 3	3	mV

Parameter	Condition	Symbol	Min.	Max.	Unit
Virtual ground voltage source					
Output current operating range		Ілм	-lia - 2	-lia + 2	mA
Output voltage ratio	-IIA-1MA < IVM < IIA+1MA	VVM / VVCC	0.48	0.52	
Nernst cell reference voltage source					
Output current operating range		lus	-0.4	0.4	mA
Oscillator					
Frequency	external 10k Ω	f	2.49	3.51	kHz
Measurement current for Ri (RA = 0 meas	urement mode; RA =1 adj	ustment mode)		
Output resistor of push-pull-stage	-1mA • Ікм • 1mA	R	5	100	Ω
Ri amplifier					
Leakage current when switch is open		ILeak	-500	500	nA
Amplification		Ao	15	16.3	
Ron for a switch		Ron		100	Ω
Input voltage range at CM, UN and RS		VRI	2	Vvcc- 1.1	V
Output voltage range		Vur	0.06 Vvcc	Vvcc- 0.2	V
Zero point for output trace		Vur/ Vvcc	0.05	0.063	
Pump reference current					
Current range	programmable with SPI-bits PRx; x = 0 to 3	- lun	0	150	μA
Diagnosis of sensor lines					
Short circuit to ground		VVM/ VVCC	0.35	0.45	
Short circuit to Vbat		Vvm/ Vvcc	0.55	0.65	
Short circuit to ground		VUN/ VVCC	0.35	0.45	
Short circuit to Vbat		VUN/ VVCC	0.55	0.65	
Short circuit to ground		VIA,IP	0.3	1.5	
Short circuit to Vbat		VIA	Vvcc	Vvcc+ 2	V
Diagnosis of external heater					
Low level		Vdiahg	- 0.3	0.3 Vvcc	V
High level		Vdiahg	0.7 Vvcc	Vvcc+ 0.3	V
Pull up current		- Idiahg	10	50	μA
Short circuit to ground	DIAHG = low	Idiahd	- 350	- 100	μA
Short circuit to Vbat	DIAHG = high	Ідіанд	- 100	10 000	μA
Open load	DIAHG = low	Ідіанд	- 100	100	μA
No failure	DIAHG = high	Idiahd	- 1 000	- 350	μΑ
No failure	DIAHG = low	Idiahd	350	10 000	μΑ
Filter time	T = 1 / f	tdiag / T	15 / 32	16 / 32	-
SPI					
Data rate				2	Mbaud
Bit-frame				16	bit
Number of read / write commands				6	
Number of register				4	


Block schematic, register, RD / WR-commands with hec-code


Failure bits ^{a.)}	Ext. heater	Sensor ^{b.)}
0 0	Short circuit to ground	Short circuit to ground
01	Open load	Low battery c.)
10	Short circuit to Vbat	Short circuit to Vbat
1 1 ^{d.)}	No failure	No failure

- a.) Each failure leads to a switch off of pump current and virtual ground
- $^{\rm b.)}$ Failure identification at UN must be enabled with ENSCUN
- c.) Open load is not recognizable; bits used for low battery
- d.) After RD_DIAG or if no failure is present; Failure bits will be restored if failure is still present


Timing

Read access

Write access

v: command valid/not valid dc: don't care ("-") x: 0 or 1 Z: tristate

Contact

Robert Bosch GmbH Sales Semiconductors Postbox 13 42 72703 Reutlingen Germany Tel.: +49 7121 35-2979 Fax: +49 7121 35-2170

E-Mail: bosch.semiconductors@de.bosch.com

Robert Bosch Corporation Component Sales 38000 Hills Tech Drive Farmington Hills, MI 48331 USA Tel.: +1 248 876-7441 Fax: +1 248 848-2818

Robert Bosch K.K. Component Sales 9-1, Ushikubo 3-chome Tsuzuki-ku, Yokohama 224 Japan Tel.: +81 45 9 12-83 01 Fax: +81 45 9 12-95 73

Internet: www.bosch-semiconductors.de

© 04/2006 All rights reserved by Robert Bosch GmbH including the right to file industrial property rights Robert Bosch GmbH retains the sole powers of distribution, such as reproduction, copying and distribution. For any use of products outside the released application, specified environments or installation conditions no warranty shall apply and Bosch shall not be liable for such products or any damage caused by such products.